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Abstract

I show that academic superstars arise quite naturally in a scientific
community where scientists are motivated only by epistemic goals, in
particular a desire for information. This is consistent with a “scientific
competence” explanation for superstars on which being a superstar is
an indicator of good scientific work. But two alternative explanations
complicate this picture. In particular, if luck plays a role in deter-
mining the information scientists obtain, being a superstar does not
necessarily reflect well on the epistemic virtues of a scientist, even
when all scientists are motivated only by epistemic goals.

∗Thanks to Kevin Zollman, Teddy Seidenfeld, Katharine Anderson, Tomas Zwinkels,
Liam Bright, Aidan Kestigian, Conor Mayo-Wilson, three anonymous referees, and audi-
ences at Ghent University, Oxford University, the California Institute of Technology, and
the Munich Center for Mathematical Philosophy for valuable comments and discussion.
This work was partially supported by the National Science Foundation under grant SES
1254291.
†Department of Philosophy, Baker Hall 161, Carnegie Mellon University, Pittsburgh,

PA 15213-3890, USA. Email: rheesen@cmu.edu

1

mailto:rheesen@cmu.edu


1 Introduction
Prestige is divided unequally in science. One measure of the prestige of a
scientist is the number of times she is cited. It has long been known that the
vast majority of scientists (the “nobodies”) receives no more than a handful
of citations, while a rare few (the “superstars”) get extremely many (Price
1965, Cole 1970).1

This raises several questions. Is this inequality the result of non-epistemic
forces from outside of science interfering or is it a natural part of a well-
functioning science? What, if anything, does having a lot of prestige say
about a scientist’s merit as a scientist? And how can this information be
used by policy makers?

The answers you give to these questions are tied deeply to your view of
science, and scientists’ motivations in particular.

On one view, traditionally defended by philosophers, scientists are truth-
seekers (Kitcher 1993, chapter 1). Each scientist’s goal is to obtain knowl-
edge. If scientists are motivated in this way, it seems natural to think that
they would pay more attention to better work (an assumption often taken
for granted by empirical work, e.g., Cole and Cole 1967, 1968). I will call this
the “scientific competence explanation” of superstars. On this explanation,
differences in prominence among scientists are justified from an epistemic
point of view, and reflect positively on the scientists that benefit from them
(the superstars).

On another view, defended mostly by sociologists, scientists’ behavior is
largely shaped by the social context or other epistemically irrelevant factors.
On this view it is primarily these epistemically irrelevant factors which deter-
mines which scientists attain prominence; call this the “sociological explana-
tion”. On a small scale, this might mean that the scientist with friends in the
right places becomes a superstar, whereas the one without does not (Latour

1More specifically, the distribution of citations follows a “power law”: the number of
papers that gets cited n times is proportional to n−α for some α. Redner (1998) estimates
α to be around 3.
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and Woolgar 1986), or that racial, gender, or other biases affect scientists’
chances of attaining prominence (Fricker 2007). On a larger scale, the social
context may require a certain kind of scientific theory (giving prominence to
its defenders) or may affect the role of science in society, thus leading to more
or fewer prominent scientists (Simonton 1975, Kroeber 1944). Proponents of
this view may even think that the existence of superstars is itself evidence
that there are epistemically irrelevant factors influencing who gets cited (a
point to which I will return). On this view the divide between superstars
and nobodies may seem arbitrary: academic superstars are not special in any
epistemically or morally relevant way.

In this paper I pursue a systematic comparison of these two explanations
for the existence of superstars.2 I also introduce a third explanation, which
turns out to share features of both in an interesting way.

First I will describe a possible mechanism, based on scientists’ desire for
information, that produces superstars. I show that this mechanism works as
advertised in a model of information exchange among scientists (see sections
2 and 3). My goal in these two sections is to prove a mathematically precise
version of the following claim.

Claim 1. If, in choosing whose work to read, scientists are motivated by gath-
ering as much information as possible given their means, then the patterns
of interaction that emerge are highly imbalanced (in a way that is consistent
with the empirical evidence): some scientists get a lot of attention, while
most get very little.

If this claim is established, it shows how scientists’ desire for information
can work as a mechanism that leads to the existence of academic superstars.

2There are many nuances to be made to this simple picture, as recent work in social
epistemology has shown. In particular, Kitcher (1993) and subsequent work has focused
on showing how scientists motivated by what I call epistemically irrelevant factors might
still form an epistemically successful community. In contrast, one of the upshots of the
present work is that a community of truth-seeking scientists may not have all the nice
features one would naively expect (see section 6).
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It provides some evidence that superstars arise naturally in a well-functioning
science. At the very least, this means that the inference from “there exist
superstars” to “there must be epistemically irrelevant factors influencing sci-
entists’ decisions” is not justified (in the absence of more specific evidence).

The results in section 3 quite naturally cohere with the scientific com-
petence explanation of superstars I outlined above: if competent scientists
obtain more valuable information than others, they become superstars. Thus
the mathematical results provide an underlying mechanism to the compe-
tence explanation. Together they suggest that superstars are better scien-
tists than nobodies. I flesh out this explanation and explore the view on
superstars that it entails in section 4.

In contrast, section 5 sets out the sociological explanation in further de-
tail. The sociological explanation does not depend on scientists’ desire for
information, and so it works quite independently of my mathematical results.
I discuss the contrasting view of superstars that follows from this explanation.

Finally, I present a third explanation on which individuals become su-
perstars based on (epistemic) luck (section 6). Here luck plays a role in
determining which scientists get useful information. If it is assumed that
scientists have a desire for information, the mathematical results of section 3
apply to this third explanation just as much as they apply to the first. But
here there is no reason to assume that the resulting superstars are better
scientists than the nobodies.

So this third explanation is of particular interest because it shows that su-
perstars need not be the most epistemically virtuous members of the scientific
community, even under the (strong) assumption that scientists’ motivations
are epistemically pure. I explore the implications of this explanation, in
particular for funding agencies. A short conclusion wraps up the paper.
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2 A Model of Information Exchange
The goal of this model is to capture important aspects of the way scientists
exchange information “in the short run”, that is, in the context of one re-
search project or paper. This section describes the model, with a focus on
indicating and defending some of the more important modeling choices that
have been made.

Consider a scientific community, consisting of some number of scientists.
Call the set of scientists I, with each element i ∈ I representing an individual
scientist. I is most naturally thought of as either the practitioners of some
given scientific discipline (small or large) or all of science. I is assumed to
be finite.

The scientists are interested in learning about the world. This is repre-
sented by assuming that there are multiple ways the world could be (collected
in a set Ω), and that scientists are interested in distinguishing between some
of these (i.e., figuring out which world, or subset of worlds, is or contains
the actual world).3 I make no assumptions about the cardinality of Ω, which
distinctions the scientists are or are not interested in making, or about any
probability or plausibility ordering the scientists might have over ways the
world could be.

Each scientist learns something about the world through her own research:
say, the outcome of her experiments. Suppose there are m experiments one
might do. Each scientist’s research involves doing each of these experiments
some (possibly zero) number of times. Write n(i, j) to denote the number of
times scientist i performs experiment j.

The set of results of the experiments of a given scientist i is called sci-
3Different scientists may consider different worlds possible, or may be interested in

different distinctions. The assumption of a single set of worlds Ω does not rule this out:
if Ωi is the set of worlds scientist i considers possible, define Ω as the Cartesian product
of Ωi for all i ∈ I, but allow a scientist i to distinguish between two possible worlds only
if they differ in their i-th index. Everything in this paper is consistent with this way of
setting things up.
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entist i’s information set Ai. Experiments are modeled as random variables,
with different experiments corresponding to different probability distribu-
tions, so an information set is a set of random variables. Information set Ai
thus contains n(i, j) random variables for each experiment j.

Each scientist publishes her information in a paper. For simplicity, I
assume that each scientist publishes a single paper, and that this paper
contains all the information in her information set.4

This leads to a second way in which scientists can learn about the world:
they can read each other’s papers. Reading a paper means learning the
information in the information set of the scientist who wrote the paper.5 In
the context of the model, reading another scientist’s paper is an action that a
scientist can take. Because of the graphical interpretation I will later give to
this action, I refer to it as “forming a connection”. So when I say “scientist i
connects to scientist i′” this just means that scientist i reads scientist i′’s
paper.

The type of information exchange that occurs when scientists read each
other’s work has some features that differentiate it from other ways scien-
tists may exchange information. First, a scientist can read another’s paper
without prior consent by the other scientist. Second, the scientist who wrote

4A slight generalization of my model would have separate sets of scientists and papers,
with an information set for each paper. Connections (as defined below) would then go
from scientists to papers. The measure of prominence I define below would be defined
for each paper, and all my results (in particular theorem 7) would hold under the same
assumptions. The measure of prominence of a scientist could then be taken to be the
sum of the measures of prominence of her papers, and the results would be essentially the
same, but with more complex notation.

5Scientists learn each other’s experimental results (or evidence) not each other’s conclu-
sions as expressed, say, in a posterior probability. In this sense my model differs from that
of Aumann (1976). One reason for doing it this way is to make sure substantial information
is exchanged. If scientists only learn each other’s posterior on some set of possible worlds,
Aumann’s result guarantees that repeated exchange of posteriors will make them equal,
but this does not necessarily mean that anyone has learned anything (see Geanakoplos
and Polemarchakis 1982, proposition 3).
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the paper does not learn anything when someone reads her paper. Zollman
(2013, section 2) calls this “one way” information transmission.

In contrast, consider a case where two scientists meet at a conference.
Here both of these features are reversed: one scientist can only learn from
the other if the other is willing to share her information, and information
can potentially flow in both directions if both are willing to share (“two
way” transmission in Zollman’s terminology).

A major difference with the information transmission models considered
by Zollman (e.g., Jackson and Wolinsky 1996, Bala and Goyal 2000) is that
there is no transfer of information in this model. That is, if scientist i has read
scientist i′’s paper, and then scientist i′′ reads scientist i’s paper, scientist i′′

does not thereby learn the information in the information set of scientist i′.
This assumption is made for two reasons. First, scientist i’s paper pre-

sumably focuses on reporting scientist i’s experimental results, not those she
learned from others. Second, even if some transfer of information happened,
and scientist i′′ learned something interesting about scientist i′’s work this
way, one might expect her to then cite scientist i′ as well, thus (for the
purposes of this model) forming an independent connection with scientist i′.

Because this model considers only one way information transmission,
without information transfer, forming a connection is an action by a sci-
entist that affects only herself. This means that pairwise stability (Jackson
and Wolinsky 1996) and other notions of equilibrium are not an issue.

Another difference is that the scientists in most information transmission
models have very few individual characteristics other than those given by
their place in the network (such as their number of neighbors). For example,
in the models of Jackson and Wolinsky (1996) and Bala and Goyal (2000),
each scientist has one “unit” of information, different from all other scientists’
units, and equally valuable.

One of very few models to incorporate more diversity among its scientists
is found in Anderson (2011). She focuses on the formation of collaboration
networks rather than citation networks, and her “skills” (comparable to in-
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formation in my model) are binary and deterministic. By having information
(in the form of a set of random variables) associated with each scientist, my
model allows for even more varied communities of scientists.

Another strand of recent work on epistemic networks has compared the
performance of different network structures on various epistemic desiderata
(Zollman 2010, Grim et al. 2013). In this work the network structures being
compared are fixed in advance by the modeler. Such work is thus complimen-
tary to the type of model considered here, which focuses on the formation of
the network.

The results obtained from this model are described in the next section.
The remainder of this section considers some ways in which this model is
unrealistic, and the conclusions to be drawn from that.

An important assumption is that the process of forming connections hap-
pens relatively quickly compared to the process of doing experiments. More
precisely, in this model scientists do not perform new experiments while they
are forming connections. What experiments each scientist has done is as-
sumed to be fixed background information when they make decisions about
whom to connect to. Moreover, individual scientists know this background
information: they are aware of which scientists have performed what number
of each of the m types of experiments.

My justification for this assumption is as follows. Relative to the time
and cost involved in designing and running an experiment, reading (and sub-
sequently citing) someone else’s paper is a very short-term activity. The
assumption that scientists know whom to connect to to get certain informa-
tion is justified by the further observation that the time required to search
for papers on a certain subject (perhaps looking at some titles and abstracts)
is itself negligible compared to the time required to actually read papers and
obtain the information in them. Additionally, in relatively small scientific
communities this assumption may be justified because everyone knows what
everyone else is working on through informal channels.

Even if this is accepted, the model unrealistically portrays science as
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consisting of only one round of experiments and one round of connections.
In reality, scientists may form many connections over time, interspersed with
experiments. But the model can be viewed as looking only at a small period
of time in a scientist’s career, say, the time associated with a single research
project: doing some experiments and exchanging results with epistemic peers.

In terms of the dynamic model of epistemic inquiry by Kelp and Douven
(2012), my model may be viewed as zooming in on one “deliberative round”
and one “disclosive round”. Afterward the scientists take what they have
learned as prior information into the next set of rounds. Depending on the
details of how the content of a scientist’s information set is constructed (which
I discuss extensively in sections 4 and 6), the effect of considering multiple
rounds may be to either amplify or dampen the results I obtain for a single
round.

A different kind of objection questions whether there is any need for this
model in the first place. It may be remarked that the characteristic pattern
of information exchange and citations in the sciences (the so-called power
law, with a few superstars and lots of nobodies) already has a standard
generating mechanism in the literature. This mechanism is described by
so-called preferential attachment models (Barabási and Albert 1999). In a
preferential attachment model new nodes (papers) form links (citations) to
older nodes proportional to the number of links that older node already has.
So any paper that already has twice as many citations as some other paper
is also twice as likely to be cited by future papers.

It can be shown that this generates a power law distribution of citations
with an exponent equal to three (Barabási and Albert 1999). This is very
close to what is observed in real citation data (Redner 1998). While this is
interesting and illuminating as far as it goes, it is not fully satisfying for at
least two reasons.

First, it gives no insight into why the difference between the two papers
appeared in the first place (the preferential attachment model needs to start
with some citations already in place for the probabilities of new citations
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to be well-defined). By not including any characteristics that distinguish
papers from one another, it offers nothing to someone who wants to predict
in advance which of two forthcoming papers will be more highly cited.

Second, preferential attachment models give a fairly simplistic picture of
scientists’ motivations in citing a paper. They require that scientists have a
preference for papers that are already highly cited (perhaps because those
are more easily found) without giving any details for why it is rational for
them to do so, or why they occasionally (with low probability) deviate from
it.

For these two reasons preferential attachment models are a non-starter if
one is interested in determining whether it is good or bad for science that
there are superstars, and how being a superstar reflects on an individual sci-
entist. In contrast, section 3 shows that in my model the information content
of a paper acts as a predictor of future citations of the paper (theorem 7).
The model is compatible with a wide range of motivations that one might
ascribe to scientists, and some results are shown for the particular case in
which the scientists are modeled as Bayesian expected utility maximizers
(theorems 5 and 6). This work is highly suggestive in terms of evaluating
superstars, as sections 4, 5, and 6 discuss.

In conclusion, I do not claim to have given a definitive model of informa-
tion exchange in science. My goal is merely to describe some aspect of it,
in particular the idea that each scientist has access to different information
(scientists are heterogeneous in this respect) and that this plays a role in
motivating other scientists to read or cite them (see the next section). The
model ignores certain complicating factors.

But if the model seems too simple to be realistic I would argue that this
is a virtue. Similar results should be expected in any (more realistic) model
that includes my model (or something close to it) as a special case. Specific
arguments would be needed to show that making the model more realistic
would undo my results.
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3 Superstars in the Model
How do scientists choose which papers to read (i.e., which connections to
form)? One might want to assume that scientists have some form of utility
function which they maximize. But this has a number of problems: whether
(expected) utility maximization can provide a good model of rationality is
controversial; even if it is a good model of rationality scientists may not act
rationally so the descriptive power of the model may be poor; and even if
those two points are dealt with one would need to argue for the specific form
of the utility function, requiring a detailed discussion of scientists’ goals.

Here I take a different approach. I state two assumptions, or behavioral
rules, that constrain scientists’ choices to some extent (although they still
leave a lot of freedom). I then show that these assumptions are sufficient for
the appearance of superstars in the model.

For those who think that, despite the problems I mentioned, scientists’
behavior should be modeled using (Bayesian) expected utility theory, I show
that a wide range of utility functions would lead scientists to behave as the
assumptions require (see theorems 5 and 6). For those who are impressed
by the problems of that approach, I argue that one should expect scientists
to behave as the assumptions require even if they are not maximizing some
utility function.

So what exactly do the scientists need to decide, and what do they know
when making this decision? Each scientist needs to decide which other sci-
entists to connect to, that is, whose papers to read. Before making any
decisions, they know what experiments have been performed by each scien-
tist (that is, the values of n(i, j) for all i and j) as well as the results of their
own experiments. I do not consider the order in which the different scientists
make their decisions: that is, scientists do not know which connections other
scientists are forming, or if they do, they ignore this information.

I allow that scientists make their decisions sequentially: after each connec-
tion they learn the results of the experiments of the scientist they connected
to, and they may use this information in deciding which connection to form
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next (or whether to stop connecting). This reflects the idea that one may
only become interested in reading a paper after reading some other paper.
So scientists effectively choose sequential decision procedures, which specify
which connections to form as a function of information gained from earlier
connections. Because that information takes the form of random variables,
the decision procedure itself is also random. A simple example illustrates
this phenomenon.

Example 2. Suppose that there are two possible worlds, a and b. Suppose
that there is one experiment and each scientist has performed that experiment
once. In world a, the experiment outputs either a zero or a one, each with
probability 1/2. In world b the experiment always outputs a one. So upon
observing a zero a scientist is certain to be in world a.

Consider a scientist who initially thinks she is equally likely to be in either
world and uses the decision procedure “form connections until you are at least
99% certain which world you are in”. Assume world a is the actual world.
Then she forms no connections with probability 1/2 (if her own experiment
yields a zero), one connection with probability 1/4 (if she saw a one but the
first scientist she connects to saw a zero), and so on. So a decision procedure
does not specify which scientists to connect to, but it specifies the probability
of connecting to them.

Now I can state the two assumptions I make on scientists’ decision pro-
cedures. The first assumption says that scientists prefer to get more infor-
mation rather than less from a connection.

Assumption 3 (Never Consider Subsets). A scientist does not connect to
a second scientist i as long as a third scientist i′ is available to connect to
and information set Ai′ contains strictly more information than information
set Ai (written Ai @ Ai′).6

6Ai @ Ai′ if and only if n(i, j) ≤ n(i′, j) for all j, where at least one of the inequalities
is strict. This relation among information sets is closely related to the usual set-theoretic
relation of inclusion. See Heesen (2014) for more on this.
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So if scientist i′ has performed more replications of the same experiments
than scientist i, one would read scientist i′’s paper rather than scientist i’s
(unless one prefers to just read both; the assumption allows that option as
well). For example in the medical sciences, where the number of experiments
might refer to the number of patients studied, a higher number of experiments
would correspond to more reliable statistical tests, and would as such be
preferable. In this way assumption 3 captures (a fairly weak version of) the
idea that scientists are truth-seeking by positing a desire for information
(cf. claim 1).

In some cases this assumption might seem unrealistic. For example in
testing a medicine one might be more interested in very extreme outcomes
(severe side effects or even death) that happened in a small sample than
in a large sample where things went as expected. But note that it is an
assumption of the model that the results of the trials are not known before
the paper is read. Thus, before knowing of the extreme outcome, it would
make sense to read the paper with a lot of trials before the one with less
trials. If the extreme outcome is learned anyway, one would in most cases
still want to read the larger study to get an idea of the frequency of the
extreme outcome. So I argue that the assumption remains reasonable in
most cases.

The second assumption gets its plausibility from the simple observation
that there is a finite limit to how many papers a scientist can read, simply
because it is humanly impossible to read more. More formally, there exists
some number N (say, a million) such that for any scientist the probability
that she forms more than N connections is zero.

But rather than making this assumption explicitly, I assume something
strictly weaker: that the probability of a very large number of connections is
very small (rather than zero).

Assumption 4 (Uniformly Bounded Connection Probabilities). Let pi,A,n
denote the probability that scientist i connects to at least n scientists with
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information set A.7 For every ε > 0, there exists a number N that does
not depend on the scientist or the size of the scientific community, such that
n · pi,A,n ≤ ε · pi,A,1 for all n > N .

Note that the actual statement of the assumption distinguishes the num-
ber of connections to a given information set. This is because for technical
reasons, I need to distinguish between cases where pi,A,1 is zero (i.e., the
scientist never connects to any scientists with information set A) and cases
where pi,A,1 is positive. But for interpreting the assumption this is mostly
irrelevant, because the number of connections to scientists with a given in-
formation set is always less than the total number of connections.

So the assumption says that for very high numbers of connections, the
probability of forming that number of connections is very small, independent
of the scientist forming the connections or the size of the scientific commu-
nity. If, as I suggested earlier, no scientist ever forms more than a million
connections, then pi,A,n = 0 for all i and A whenever n is greater than a
million, and so the assumption would be satisfied.

As I indicated, these assumptions are not only independently plausible,
but are also satisfied by Bayesian scientists (who maximize expected utility)
under quite general conditions. The most important of these conditions is
that there is a fixed cost c for forming a connection. This cost may reflect
such real world considerations as the opportunity cost of the time spent
reading the paper. Note also that without such a cost the unrealistic and
uninteresting result would be that scientists read every paper (Good 1967).
For this reason a cost is commonly included in models of this kind (Zollman
2013, section 2).

The relation between my assumptions and Bayesian rationality is ex-
pressed in the following two theorems. Proofs of these theorems may be
found in Heesen (2014).

7A scientist has information set A if her information set contains the same number of
realizations of each experiment as A does. See Heesen (2014) for more on what this means
formally.
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Theorem 5. If c > 0 and if each realization of an experiment is probabilis-
tically independent and has a positive probability of changing the scientist’s
future choices, then the way a fully Bayesian rational scientist chooses con-
nections satisfies assumption 3.

Theorem 6. If c > 0 and if each realization of an experiment is probabilis-
tically independent, then a community of fully Bayesian rational scientists
with the same prior probabilities over possible worlds and the same utility
functions chooses connections in a way that satisfies assumption 4.

With the two assumptions in place, consider the graph or network formed
by viewing each scientist as a node, and drawing an arrow (called an arc or
directed edge in graph theory) from node i to node i′ whenever scientist i
forms a connection with scientist i′.8

In order to study the prominence of scientists in this network, I need a
measure of prominence. A natural idea suggests itself: a scientist is promi-
nent if a large number of scientists read her work. In the network, the number
of scientists who read i’s work is simply the number of arrows ending at i.
In graph-theoretical terms, this is the in-degree of node i. So the in-degree
can be used as a measure of the prominence of scientists in the community.
This idea is illustrated in figure 1.

If a scientist learns something from another scientist, she usually acknowl-
edges this fact in future work by citing the paper she read. In general, one
may expect the papers that a given scientist cites to be highly correlated
with the papers she read. So the measure of prominence based on in-degree
I have just defined should in practice match up closely with citation metrics.

If, as I have suggested, some scientists (the superstars) get many cita-
tions and some very few, then one should expect large differences in in-degree
among scientists. The following theorem says that this is exactly what hap-
pens in my model. The theorem relates the average in-degrees of scientists

8More formally, the network of interest is G = (I, {(i, i′) ∈ I2 | i connects to i′}), where
I is the set of nodes and {(i, i′) ∈ I2 | i connects to i′} is the set of arcs.
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Figure 1: Two networks for small scientific communities. On the left, scientist
7 is prominent because she has an in-degree of 6 while the other scientists in
her community have an in-degree of 0. On the right, all scientists are equally
prominent, having an in-degree of 1.

(denoted, e.g., E [d(A)] for the average in-degree of a scientist with informa-
tion set A).9

Theorem 7 (Supermodularity of the average in-degree). Let I be a set of
scientists satisfying assumptions 3 and 4. If I is large enough, then the av-
erage in-degree is a supermodular function. That is, for any two information
sets A and B such that at least one scientist in I has information set AtB10,

E [d(A tB)] + E [d(A uB)] ≥ E [d(A)] + E [d(B)] .

Moreover, if neither A nor B contains the same information as AtB11 and
9Recall that a scientist has information set A if her information set contains the same

number of realizations of each experiment as A does.
E [d(A)] denotes an average in two senses. First, it averages over all scientists with

information set A. Second, it takes the average (known as the mean in probability theory)
over all the possible graphs that may arise due to the probabilistic nature of individual
scientists’ decisions to form connections.

10I write Ai′′ = Ai t Ai′ if n(i′′, j) = max{n(i, j), n(i′, j)} for all j, and Ai′′ = Ai u Ai′
if n(i′′, j) = min{n(i, j), n(i′, j)} for all j. So, loosely speaking, A t B contains as much
information as A and B combined, while A u B contains only as much information as
is shared between A and B. These notions are closely related, but not identical, to the
standard set-theoretic notions of union and intersection. See Heesen (2014) for details.

11That is, if neither A nor B contains the same number of realizations of each experiment
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E [d(A tB)] > 0 then the above inequality can be strengthened to

E [d(A tB)] > E [d(A)] + E [d(B)] .

What the theorem says is that if the set of scientists is sufficiently large,
the average prominence of a given scientist increases rapidly (faster than
linearly) in the size of her information set. See Heesen (2014) for a proof.

The theorem is important because it shows that the patterns of infor-
mation exchange in my model reflect the patterns that can be seen in real
citation networks. That is, most papers have few citations, while a rare few
have a great number of citations (Price 1965, Cole 1970, Redner 1998).

Theorem 7 is how I substantiate claim 1. That is, I interpret the theorem
as saying that a community of scientists desiring to gather as much informa-
tion as possible (assumption 3) given their finite means (assumption 4) will
exhibit a pattern of superstars and nobodies similar to the pattern that can
be observed in actual science.

In this model, I have assumed only that gathering information is one
of scientists’ motivations. The model is consistent with many other factors
influencing scientists’ decisions what to read, including the epistemically ir-
relevant factors mentioned in section 1 and elaborated upon in section 5. But
one special case of the model would be one in which epistemically irrelevant
factors do not influence scientists’ decisions. By theorem 7, superstars would
be present in a community of such “epistemically pure” scientists.

This does not establish whether the superstars of real science arise (pri-
marily) due to epistemic considerations or due to something else. The rest of
this paper will take up that question and the implications if one or another
answer is true.
as A tB.
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4 The Scientific Competence Explanation
The previous two sections considered a possible mechanism that produces
academic superstars. The crucial component of this mechanism is scientists’
desire for information. So in describing this mechanism I relied on scientists
being motivated (implicitly or explicitly) by epistemic goals.

How does being a superstar reflect on a scientist? If she is a superstar as
a result of other scientists’ epistemic goals (her work gets read a lot because
of its information content), her status would intuitively seem to be well-
deserved. Being a superstar then reflects on her epistemic virtues, i.e., her
competence as a scientist.

This section explores that intuition and what follows from it in terms
of what an outside observer can conclude from the fact that a scientist is a
superstar. It exploits the scientific competence explanation that I outlined
in section 1.

The next two sections investigate two contrast cases. The first is based
on the alternative approach in which the social context or other epistemically
irrelevant factors are the major shaping force. In this case superstars arise
due to scientists’ non-epistemic goals, independently of the information-based
mechanism I have described. Not surprisingly, this leads to a different view
on superstars (section 5). The second case challenges the intuition devel-
oped above by showing that a scientist could become a superstar as a result
of other scientists’ epistemic goals (in particular, via the information-based
mechanism) without being particularly epistemically virtuous (section 6).

But for now consider the scientific competence explanation: superstars
are scientists whose work gets read a lot because their work is of higher quality
than that of other scientists. The thought behind combining this explanation
with the information-based mechanism is simple: better scientists obtain
more information relevant to a given problem in less time, and having more
information leads to more people wanting to read their papers.

The idea that high quality papers get cited more is common in the lit-
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erature.12 Assuming that reading and citing a paper are highly correlated,
it follows immediately that high quality papers get read more. If competent
scientists tend to produce high quality papers, then competent scientists can
expect their papers to be read more.

The model of sections 2 and 3 describes how this might work. Consider
the following simplified version of that model.13 Suppose there is a set P
of propositions that scientists want to learn the truth-value of. Assume
that a scientist can be either competent or incompetent. Each incompetent
scientist learns the truth-value of m propositions in P , while each competent
scientist learns the truth-value of n propositions in P , with m < n. Since the
competent scientists obtain more information than the incompetent ones, it
follows from theorem 7 that competent scientists will be more prominent (in
terms of average in-degree) than incompetent scientists.

If the scientific competence explanation is broadly correct, it yields an
easy way of figuring out which scientists are competent and which ones are
not: the competent ones are the ones that get cited the most (assuming that
being read and being cited are correlated). So under this explanation one
can infer in both directions: from competence to many citations and from
many citations to competence.

The latter inference has indeed been made by some philosophers: “I do
not need to argue, I think, that a discovery produced by a scientist with a
demonstrated record of success [many citations] has more initial credibility
than a discovery produced by an unknown” (Strevens 2006, p. 166). Clearly,
Strevens thinks that if a scientist has been cited a lot this is evidence in

12In fact Cole and Cole (1967, 1968) simply identify the two, using citations as a measure
of quality in pursuing the question whether quality of publications is important in getting
recognition for one’s research.

13Here I only consider a very simple way in which more competent scientists may obtain
more information. The model of sections 2 and 3 can also capture situations where the
relation between the competence of a scientist and the information she learns is more
complicated. Theorem 7 guarantees that more competent scientists can expect their papers
to be read more often than less competent scientists in each of these situations, as long as
competence is somehow correlated with information.
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favor of the quality of their future work. It appears that Strevens tacitly
supports the scientific competence explanation, as this inference is far less
straightforward under the explanations I consider in the next two sections.

If scientists choose which papers to read primarily based on the value of
the information in those papers, this has some obvious additional benefits
(over and above the benefit to the individual scientists of reading more rather
than less valuable information). It would result, as theorem 7 shows, in a
pattern where the number of citations to a paper correlates strongly with the
value of the information therein. This would allow outsiders such as laypeople
or funding agencies to identify the best work in a discipline relatively easily by
looking at highly cited papers. They could then use citation metrics to rank
scientists’ competence and, e.g., award grants based on this information.14

All seems well so far. But of course the fact that the scientific competence
explanation yields a coherent story does not prove that story to be the correct
one. In the next two sections I discuss two alternatives.

5 The Sociological Explanation
The sociological explanation provides a very different view on how being a
superstar reflects on a scientist. Under the sociological explanation, one or
more epistemically irrelevant factors cause some scientists’ work to garner
more attention than others’.

The literature identifies many factors that influence a scientist’s promi-
nence (measured in such terms as being able to get work published, getting
citations, or receiving awards, or their work being viewed as “credible” ).
Some such factors include the scientist’s (or her institution’s) reputation (the

14Note that I am not claiming that this arrangement is in some sense socially optimal. It
does not follow from the fact that individual scientists are behaving epistemically optimal
in a certain sense (as I assume in this paragraph) that the resulting scientific community
is epistemically successful (Mayo-Wilson et al. 2011). But the community-level benefits I
do ascribe to it, in particular for policy makers, follow straightforwardly from the work in
section 3.
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so-called Matthew Effect, see Merton 1968), the reviewers that get assigned
to her work (Cole et al. 1981), the scientist’s age (Kuhn 1962, Zuckerman and
Merton 1972), whether the work is available through open access (Greyson
et al. 2009), being associated with prestigious scientists (Latour and Woolgar
1986), and prejudice based on gender, race, or academic affiliation (Fricker
2007). Additionally, trends within science or in the community at large may
lead to certain kinds of scientific work (or science as a whole) to gain or lose
prominence (Kroeber 1944). For example, Simonton (1975) investigates the
effects of nationalism and political instability on science.

What these factors have in common is that they are presumably epis-
temically irrelevant: white male scientists at prestigious institutions working
on a “hot topic” may get read more, but this in itself is no indication that
their work is of higher quality than that of their peers. If these factors are
indeed causing some scientists’ work to get more attention than others’, it
would appear that the work of some scientists is getting overvalued (and
that of others undervalued) relative to its epistemic merit. For example,
the scientific work of women is consistently undervalued relative to that of
men (Valian 1999). Fricker (2007) and Wylie (2011, p. 168) argue that this
constitutes an epistemic injustice (a term coined by Fricker).

From the perspective of, say, funding agencies, this is a serious problem.
They try to give grants based on merit, i.e., based on who is likely to make
good contributions to science in the future. But if merit is (partially) mea-
sured by prominence (e.g., via citation metrics), the agencies will in fact be
rewarding something other than merit. If Fricker and Wylie are right, they
may even find themselves perpetuating epistemic injustice.

It is important to emphasize that the model of sections 2 and 3 does
not show the sociological explanation to be wrong. Epistemically irrelevant
factors certainly exist in real life, and it is plausible that they contribute to
the phenomenon that some papers get read more than others.

What the model does show is that the presence of epistemically irrelevant
factors is not necessary for the phenomenon of interest to arise. I have shown
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that even if scientists were (counterfactually) completely blind to epistemi-
cally irrelevant factors, some papers would still get read more than others.

Imagine a sociologist of science investigating the phenomenon of super-
stars. One thing she might do is compare the (epistemic) quality of papers
to their citations. Given the extreme skew in the distribution of citations,
she would probably find that the differences in quality between papers are
much smaller than the differences in the number of times they get cited. As a
result, the imaginary sociologist concludes that other factors than epistemic
quality are influencing citation patterns.15

But she is mistaken. Since the average in-degree is a supermodular func-
tion (theorem 7), small differences in quality can account for large differences
in prominence in a non-linear fashion. Even differences in prominence that
seem disproportionate to the differences in quality are not by themselves ev-
idence of epistemically irrelevant factors being at work. This is one of the
upshots of my model.

From the perspective of a relative outsider, in particular one in charge of
awarding grants, the sociological explanation suggests conclusions completely
opposite to those of the scientific competence explanation. If epistemically
irrelevant factors are driving who gets read, citation metrics say little or
nothing about the quality of a given paper or scientist.

It is quite plausible that in reality both epistemically relevant and epis-
15For example, Medoff finds that “after controlling for author quality, journal quality and

article-specific characteristics,. . . an article written by an economist affiliated with Harvard
University or the University of Chicago had significantly (statistically and numerically)
greater peer recognition [measured in citations] than if it was written by an economist
affiliated with a less prestigious university” (Medoff 2006, p. 504). He concludes that “the
empirical results found that an institutional Matthew Effect was in operation” (Medoff
2006, p. 504), which is defined as a “disproportionate allocation of peer recognition” (Med-
off 2006, p. 503) based on the prestige of the economist’s institution. Notably, quality is
only allowed to have a linear effect on citations in his model. Thus, this is an example
of someone concluding that epistemically irrelevant factors must be at work because the
observed differences in citations seem disproportionate (in the sense that a linear model
cannot capture them) to the differences in quality.
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temically irrelevant factors contribute to the differences in prominence among
scientists. This complicates the issue even further: all things considered,
what do citation metrics say about the quality of a paper?

If it were possible to reduce the impact of epistemically irrelevant factors
or increase the impact of epistemically relevant factors, this would at least
make the jobs of those awarding grants easier.16 Here one can think for
instance of programs designed to decrease implicit bias in science. Among
other effects (presumably there are benefits from an ethical perspective as
well), such programs should make it more likely that if there are differences
among scientists in terms of the amount of attention their work gets, these
differences exist for epistemic reasons.

However, this conclusion assumes that factors that influence who gets
read can be neatly separated into epistemically relevant and epistemically
irrelevant ones. The third and final explanation I consider challenges the
neatness of this distinction.

6 The Epistemic Luck Explanation
Some scholars have identified dealing with anomalies or unexpected results
as a central feature of scientific research (Kuhn 1962, Dunbar and Fugelsang
2005). The “epistemic luck explanation” proceeds from the assumption that
some amount of luck is involved in getting the kind of unexpected result that
leads to an important paper. Under this explanation, it is the lucky rather
than the competent scientists who end up with the largest information set
and thus get read the most.

Stories involving epistemic luck (or serendipity) are very common in the
history of science (Roberts 1989). Penicillin’s ability to kill bacteria, for ex-

16Insofar as this is possible, I think it would be a good idea overall. But this does
not straightforwardly follow from the claim that individual scientists’ decisions would be
motivated more by epistemically relevant factors and less by epistemically irrelevant factors
(Mayo-Wilson et al. 2011). See also footnote 14.

23



ample, was discovered when a Petri dish was accidentally left open overnight.
Such lucky accidents plausibly have nothing to do with the scientist’s com-
petence, or even any specific sociological factor (but see McKinnon 2014
and Merton and Barber 2004, chapter 9, for some discussion of the relation
between luck and merit).

The important point to note here is that, given the results of section 3,
relatively minor lucky accidents can have a big impact on prominence. I
illustrate this in a simplified version of the model, but the point generalizes.

Suppose there is a set P containing n propositions that scientists want to
learn the truth-value of. Suppose each scientist has a chance α of learning
the truth-value of any given proposition, independent of all other proposi-
tions and scientists. The lucky scientists who learn the truth-value of all n
propositions (which happens with probability αn) write the papers with the
highest average in-degree in this model (this follows from theorem 7; see also
Anderson 2011, section 3, for a detailed discussion of this particular model).

There is an interesting interplay between epistemically relevant and epis-
temically irrelevant factors here. On the one hand, the scientists are deter-
mining whose work to read based on information, an epistemically relevant
factor. But who has the most informative paper is determined by luck, an
epistemically irrelevant factor.

The epistemic luck explanation is thus similar to the scientific competence
explanation in that it can produce superstars via the mechanism based on
scientists’ desire for information. Theorem 7 can turn both competent and
lucky scientists into superstars. But it is similar to the sociological explana-
tion in that it does not follow that prominent scientists are more competent
than others (more on this below).

It is interesting to note that if scientific competence and epistemic luck
are brought into play at the same time, the luck factor can easily drown out
the competence factor. Once again I use a simplified model to illustrate this
point.

Assume there are n propositions the scientists want to learn about, and

24



there is a fixed probability of learning any given proposition, independent of
the other ones. To reflect the competence factor, assume that there are two
types of scientists: average ones, whose probability of learning a proposition
is α, and good ones, whose probability of learning a proposition is β (0 <

α < β < 1).
Let p denote the proportion of good scientists (so 1− p is the proportion

of average ones). It seems plausible that good scientists are relatively rare:
most scientists are of average quality. Now it turns out that if good scientists
are sufficiently rare, the chance that a paper with high in-degree is written
by a good scientist may be arbitrarily small.

To make this more precise, suppose one draws a scientist at random from
the population. Let g denote the proposition that the scientist drawn is a
good scientist (so ¬g means drawing an average scientist) and let h denote
the proposition that the scientist’s paper has a high in-degree.

Proposition 8. Assume that average scientists learn with probability α and
good scientists learn with probability β (where 0 < α < β < 1 and the prob-
ability of learning any given proposition is independent of the probability of
learning any other proposition). Then for all ε > 0 there exists a proportion
of good scientists p ∈ (0, 1) such that Pr(g | h) ≤ ε.

Proof. Let ε > 0. If ε ≥ 1 then Pr(g | h) ≤ ε is true for any p. Otherwise
choose

p = αnε

βn(1− ε) + αnε
.

It follows from theorem 7 that papers by scientists who learn all n propo-
sitions will have the highest in-degree (see also Anderson 2011, theorem 5).
Therefore
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Pr(g | h) = Pr(h | g)p
Pr(h | g)p+ Pr(h | ¬g)(1− p)

=
βnαnε

βn(1−ε)+αnε

βnαnε+αnβn(1−ε)
βn(1−ε)+αnε

= αnβnε

αnβn
= ε.

So I can make the proportion of high in-degree papers written by good
scientists arbitrarily small by making the overall proportion of good scientists
very small. If one thinks that both scientific competence and epistemic luck
have a role to play in determining how much valuable data a scientist obtains
from her experiments, and if one also thinks that good scientists are quite
rare, then if a paper gets read a lot this is not good evidence that the author
is a good scientist. Thus the inference from many citations to competence
(which is valid when the scientific competence explanation is the only correct
one) is invalid if epistemic luck is a factor.

Note that repeating this process over multiple papers would give the
competent scientists a better chance. Thus one might think that while any
individual paper being highly cited could be a result of luck, competent
scientists might still end up being more highly cited over the course of a
career. But this is not obviously true: proposition 8 could be extended to
say that if good scientists are rare enough, the chance that a whole series of
well-cited papers (by the same author) are written by a good scientist may
be arbitrarily small. Of course the proportion of good scientists would need
to be made exceedingly small, perhaps unrealistically so.

But if the claim that luck can drown out competence is taken seriously, it
has some interesting implications. Even if scientists are following only “epis-
temically pure” motivations (e.g., their desire for information) in deciding
whom to read, this does not necessarily reflect well on the epistemic virtues
of the prominent scientists. This is because the valuable information in the
prominent scientists’ papers may have arisen either from their competence
or from luck. Presumably only the former case reflects well on their virtues
as scientists.
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This suggests a separation between two questions that might otherwise
have been easy to conflate. If one is interested in awarding credit (say, a Nobel
prize) for past contributions to science, it seems reasonable to look primarily
at the informational value of the contributions, and not worry about whether
this value was primarily the result of exceptional competence or exceptional
luck. But if one is interested in who is most likely to make important future
contributions (say, when awarding research grants), it would be important
to recognize whether past success was due to competence or luck, as presum-
ably competent scientists are more likely than average scientists to produce
valuable work in the future, while lucky scientists are not.17

If the epistemic luck explanation is largely correct, it makes citation
counts specifically and prominence more generally much less useful as a way
of separating the wheat from the chaff when decisions concerning future
projects need to be made. This would be important to know not just for sci-
entists considering whom to read, collaborate with or hire for new projects,
but also for policy makers, funding agencies, future graduate students, and
the general public.

As I alluded to in the previous section, it is entirely possible that more
than one of the explanations I have discussed is true. Perhaps both scien-
tific competence and epistemic luck contribute to differences in information
among scientists, which leads to some scientists’ work getting more atten-
tion than others’, while epistemically irrelevant factors either exacerbate or
weaken the effects of the differences in information.

One of the lessons from this paper should then be not to jump to the
conclusion that just because some scientists are more prominent than others
some particular factor must be causing it: there are many factors that could
cause this, and inferences (e.g., about a scientist’s merit) that are straight-
forward if some particular factor is the cause may be mistaken if another
factor is the cause, or if multiple factors are at work.

17On most views of luck. See McKinnon (2014) for a possible exception.
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7 Conclusion
In this paper I considered a model of information exchange in which academic
superstars are seen to arise. The model shows that a mechanism based on
scientists’ desire for information can be quite effective: small differences in
informational value can lead to large differences in prominence.

This suggests a scientific competence explanation for academic superstars.
This explanation allows for the use of citation metrics in identifying compe-
tent scientists. But two alternative explanations complicate the picture.

The sociological explanation claims that a different mechanism than sci-
entists’ desire for information creates superstars. The epistemic luck explana-
tion claims that even when superstars are created as a result of scientists’ de-
sire for information, the identification of competence with prominence might
not go through.

This is relevant to funding agencies, as it highlights the fact that promi-
nent scientists are not necessarily the most promising. The epistemic luck
explanation shows that one should be careful in using measures of past suc-
cess (like citation metrics) to decide who is likely to do well in the future.

More generally, care should be taken in drawing conclusions about expla-
nations for academic superstars, or the merits of individual superstars. The
existence of an information-based mechanism to create superstars does not
warrant the conclusion that actual superstars were created by this mecha-
nism. But, due to the information-based mechanism, one should also not be
too quick to conclude that superstars were created by epistemically irrele-
vant factors. And even evidence that a given superstar was created by the
information-based mechanism does not establish whether competence or luck
was responsible.
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